What links exist between agricultural practices and their impacts on human health and the environment?

MAY 29TH 2024

MARIE-LAURE EYCHENNE

Responsable Développement Durable

MICHEL DURU

Directeur de recherche, actuellement chargé de mission à l'INRAE, membre de l'Académie d'Agriculture

FELIX NOBLIA

Agriculteur et co-fondateur de ReGeneration

Impacts of agricultural practices on health and the environment

Michel Duru Research Director, project manager at INRAE Agronomy and global health

Member of the Academy of Agriculture

Context: environment, health and hidden costs of food system

Agroecology for :

- cropping systems and plant products

- livestock systems and animal products
- food system and diet quality

Lessons for regenerative agriculture

Which future for regenerative agriculture and food systems?

Our food system affects all the fields of health: soils, ecosystems, Earth system and human health

- Local (diffuse pollution) and global (climate) environment
- Resources: land, water, energy, phosphorus
- Health: chronic diseases, antibiotic resistance

1 € for food is almost 1 € to repair health and nature

- 4 main factors, excess of:
- nitrogen fertilizers
- pesticides
- farming unconnected with the soil and consumption of animal proteins
- ultra-processed foods

PLANÈTE • CLIMAT

La Banque mondiale appelle à « réorienter drastiquement » le système agroalimentaire mondial

Les solutions proposées par l'institution financière sont toutefois jugées insuffisantes pour aller vers un modèle durable et résilient.

Need for TRANSFORMATIVE change: *Le Monde 7 mai 2024* Fundamental and systemic reorganization of economic, social and technological factors: paradigms, objectives, values

C2 - Internal

Exceeding planetary limits

Worsening, degradation

Agriculture and environment: reducing impacts or/and increasing services

Duru, M., Sarthou, J. P., & Therond, O. (2022). L'agriculture régénératrice: summum de l'agroécologie ou greenwashing?. Cahiers Agricultures, 31.

Ecological agriculture: biodiversity before technologies

C2 - Internal

Assess impacts and services of cropping and livestock systems

Agricultural practices are indicators of means that do not prejudge the level of impacts and services, given the climate and interactions with the soil From practices tomeasurements ifpossible

Multi-criteria analysis of three types of agriculture well-documented for their effects: impacts and services

cz - internal

Impacts: different strengths and weaknesses depending on the forms of agriculture practices **Services to society:** better for agroecological agriculture

Weighting between criteria on a scientific and/or political basis

Regenerative agriculture: To go even further in reducing impacts and providing services

Regenerative agriculture : go further for providing ecosystem services through biodiversity

Carbon is the primary limiting factor for soil microbes

Regenerative agriculture is first and foremost based on soil biodiversity

Regenerative agriculture need to suppress oxidative practices (tillage, some N fertilizers and pesticides) to reduce the risk of pathogens

The soil organic matter / clay ratio is a simple indicator of soil health

Regenerating soil can take 10 to 15 years

Regenerative agriculture is also based on biodiversity in plots and landscapes.

Regenerative agriculture needs to increase biodiversity from field to landscape to favour natural ennemies of bioagressors and to reduce plant sensitivity to bioagressors (plant mixtures....)

Thomas, F D; Doring, 'Designing Pest Suppressive Agroecosystems : Principles for an Integrative Diversification Science', *Journal of Cleaner* Production, 432 (2023) http://dx.doi.org/10.1016/j.jclepro.2023.139701

Effect of regenerative agriculture on nutrient concentration in plants

Average ratio of concentrations of individual nutrients for paired regenerative and conventional farms.

Nutrient	All crops
Vitamin K	1.34
Vitamin E	1.15
Vitamin C	1.03
Vitamin B1	1.14
Vitamin B2	1.17
Vitamin B3	1.08
Vitamin B5	1.04
Vitamin B6	0.83
Total Phenolics	1.20
Total Phytosterols	1.22
Total Carotenoids	1.15

Regenerative agriculture tends to increase some **nutrient density** in plants mostly via miccohrizes (if none pesticides and tillage) and some bacteria (if enough organic matter)

Montgomery, David et al 'Soil Health and Nutrient Density : Preliminary Comparison of Regenerative and Conventional Farming', *PeerJ*, 2022, 1–20 http://dx.doi.org/10.7717/peerj.12848

C2 - Internal

Sustainability assessment of livestock in 3 dimensions

Regenerative livestock: grassland-based & high integrated crop/livestock

Focus on the effect of animal feed on the products health value and environment

Animal products	Animal feeding system	Strengtl	h for our health	Strength for environment	Market
		Omega-3 (anti-inflammatory FA)	Omega 6/ omega 3 (target : 4 to be anti- inflammtory)	GHG and N emissions	
Milk	Corn and soya (imported)	Х	8	-	65%
	Grass feed	2 x	2	+	35% (most often organic)
Pork, poultry, egg	Cereal+ soya (imported)	X	10	-	90-95%
	Cereal+ legumes (French) + linseed	2 x	2	+	5-10% (Bleu Blanc Cœur)

The omega-3 fatty acids content is doubled when:

- cow is feed with grass;
- pigs and poultries with linseed

Duru, M., & Magrini, M. (2016). Consommer des produits dont les animaux ont été alimentés à l'herbe est-il suffisant pour équilibrer notre alimentation en acides gras poly-insaturés ? *Fourrages*, 301–312.

Regenerative food system: one health perspective

Increase nutrients that are good for gut microbiota : omega-3 (animal products) and anti-oxidants (crops) that respectively depend on **livestock and crop management**

Decrease contaminants and foods that are bad for gut microbiota

- exposure to pesticide residues and heavy metals (Cd) that depend on crop management
- ultra-processed foods (low nutrient density, additives) that depend on food processing

Moreira-Rosário, A., et al (2021). Gut Microbiota Diversity and C-Reactive Protein Are Predictors of Disease Severity in COVID-19 Patients. *Frontiers in Microbiology*

Cahlers de nutrition et de diététique 57 (2022) 18-27

Through our diet, we can "control" our gut microbiota through diet and thus influence the risk of chronic diseases

C2 - Internal

Our ongoing work on regenerative agriculture

Summum of agroecology or greenwashing? (ongoing)

- Depends on whether the different levels of biodiversity (plants, soils, ecosystems) are taken into account
- Requires coordination between manufacturers to value a variety of crops

What is a regenerative food system? (in prospect)

Be regenerative from field to plate -> do not use products from regenerative agriculture to make **ultra-processed food**

C2 - Internal

When I started growing

Organic matter and carbon, keys to the future and to soil life

Loss of soil = desert as future

Buy equipment to reduce costs... less fuel, end of soil tillage

Plant diversity Rape seed+ Afalfa, Fenugreek, Nyger, Red clover

Plant diversity Maintain alfalfa cover in the following wheat crop

Complementary roots and plants for a healthy ecosystem

Complementarity between livestock and crops

Learn to..... Unlearn

Unlearn, Relearn, to understand

Trying..

Never lose.. Win or learn

Unlearn, Relearn, to understand.. Not alone

Making regenerative agriculture more profitable

- * Sequestrated soil organic carbon
- ***** Biodiversity impact
- * Impact on water resources and the water cycle

Measurement and transparency = <u>Proof of virtue and value</u>

Measuring results

REGENERATION the trusted third-party company

9 REGENERATION

A l'écoute de vos questions

MARIE-LAURE EYCHENNE

Responsable Développement Durable

MICHEL DURU

Directeur de recherche, actuellement chargé de mission à l'INRAE, membre de l'Académie d'Agriculture

FELIX NOBLIA

Agriculteur et co-fondateur de ReGeneration

MERCI

Follow-up Webinar :

Annexes

Figure 6

Soil available water-holding capacity (AWHC) versus soil organic matter (SOM) for (a) 0% to 8% range and (b) 0% to 100% range of SOM.

Relation entre teneur en O des sols et réserve faicilement utilisable (Libohova et al. 2018)

Water cycle in climate

Importance of plant transpiration in cloud creation.

Formation des cristaux de glace dans un nuage

